Package 'kcmeans'

Title: Conditional Expectation Function Estimation with K-Conditional-Means
Description: Implementation of the KCMeans regression estimator studied by Wiemann (2023) <arXiv:2311.17021> for expectation function estimation conditional on categorical variables. Computation leverages the unconditional KMeans implementation in one dimension using dynamic programming algorithm of Wang and Song (2011) <doi:10.32614/RJ-2011-015>, allowing for global solutions in time polynomial in the number of observed categories.
Authors: Thomas Wiemann [aut, cre]
Maintainer: Thomas Wiemann <[email protected]>
License: GPL (>= 3)
Version: 0.1.0.9000
Built: 2025-01-27 02:54:26 UTC
Source: https://github.com/thomaswiemann/kcmeans

Help Index


K-Conditional-Means Estimator

Description

Implementation of the K-Conditional-Means estimator.

Usage

kcmeans(y, X, which_is_cat = 1, K = 2)

Arguments

y

The outcome variable, a numerical vector.

X

A (sparse) feature matrix where one column is the categorical predictor.

which_is_cat

An integer indicating which column of X corresponds to the categorical predictor.

K

The number of support points, an integer greater than 2.

Value

kcmeans returns an object of S3 class kcmeans. An object of class kcmeans is a list containing the following components:

cluster_map

A matrix that characterizes the estimated predictor of the residualized outcome Y~YX2:π^\tilde{Y} \equiv Y - X_{2:}^\top \hat{\pi}. The first column x denotes the value of the categorical variable that corresponds to the unrestricted sample mean mean_x of Y~\tilde{Y}, the sample share p_x, the estimated cluster cluster_x, and the estimated restricted sample mean mean_xK of Y~\tilde{Y} with just K support points.

mean_y

The unconditional sample mean of Y~\tilde{Y}.

pi

The best linear prediction coefficients of YY on XX corresponding to the non-categorical predictors X2:X_{2:}.

which_is_cat,K

Passthrough of user-provided arguments. See above for details.

References

Wang H and Song M (2011). "Ckmeans.1d.dp: optimal k-means clustering in one dimension by dynamic programming." The R Journal 3(2), 29–33.

Wiemann T (2023). "Optimal Categorical Instruments." https://arxiv.org/abs/2311.17021

Examples

# Simulate simple dataset with n=800 observations
X <- rnorm(800) # continuous predictor
Z <- sample(1:20, 800, replace = TRUE) # categorical predictor
Z0 <- Z %% 4 # lower-dimensional latent categorical variable
y <- Z0 + X + rnorm(800) # outcome
# Compute kcmeans with four support points
kcmeans_fit <- kcmeans(y, cbind(Z, X), K = 4)
# Print the estimated support points of the categorical predictor
print(unique(kcmeans_fit$cluster_map[, "mean_xK"]))

Prediction Method for the K-Conditional-Means Estimator.

Description

Prediction method for the K-Conditional-Means estimator.

Usage

## S3 method for class 'kcmeans'
predict(object, newdata, clusters = FALSE, ...)

Arguments

object

An object of class kcmeans.

newdata

A (sparse) feature matrix where the first column corresponds to the categorical predictor.

clusters

A boolean indicating whether estimated clusters should be returned.

...

Currently unused.

Value

A numerical vector with predicted values (if clusters = FALSE) or predicted clusters (if clusters = FALSE).

References

Wiemann T (2023). "Optimal Categorical Instruments." https://arxiv.org/abs/2311.17021

Examples

# Simulate simple dataset with n=800 observations
X <- rnorm(800) # continuous predictor
Z <- sample(1:20, 800, replace = TRUE) # categorical predictor
Z0 <- Z %% 4 # lower-dimensional latent categorical variable
y <- Z0 + X + rnorm(800) # outcome
# Compute kcmeans with four support points
kcmeans_fit <- kcmeans(y, cbind(Z, X), K = 4)
# Calculate in-sample predictions
fitted_values <- predict(kcmeans_fit, cbind(Z, X))
# Print sample share of estimated clusters
clusters <- predict(kcmeans_fit, cbind(Z, X), clusters = TRUE)
table(clusters)