Package: kcmeans 0.1.0.9000

kcmeans: Conditional Expectation Function Estimation with K-Conditional-Means

Implementation of the KCMeans regression estimator studied by Wiemann (2023) <arxiv:2311.17021> for expectation function estimation conditional on categorical variables. Computation leverages the unconditional KMeans implementation in one dimension using dynamic programming algorithm of Wang and Song (2011) <doi:10.32614/RJ-2011-015>, allowing for global solutions in time polynomial in the number of observed categories.

Authors:Thomas Wiemann [aut, cre]

kcmeans_0.1.0.9000.tar.gz
kcmeans_0.1.0.9000.zip(r-4.5)kcmeans_0.1.0.9000.zip(r-4.4)kcmeans_0.1.0.9000.zip(r-4.3)
kcmeans_0.1.0.9000.tgz(r-4.5-any)kcmeans_0.1.0.9000.tgz(r-4.4-any)kcmeans_0.1.0.9000.tgz(r-4.3-any)
kcmeans_0.1.0.9000.tar.gz(r-4.5-noble)kcmeans_0.1.0.9000.tar.gz(r-4.4-noble)
kcmeans_0.1.0.9000.tgz(r-4.4-emscripten)kcmeans_0.1.0.9000.tgz(r-4.3-emscripten)
kcmeans.pdf |kcmeans.html
kcmeans/json (API)
NEWS

# Install 'kcmeans' in R:
install.packages('kcmeans', repos = c('https://thomaswiemann.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/thomaswiemann/kcmeans/issues

On CRAN:

4.48 score 2 stars 1 packages 5 scripts 208 downloads 1 exports 7 dependencies

Last updated 1 years agofrom:ecd07a6b4a. Checks:8 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKJan 27 2025
R-4.5-winOKJan 27 2025
R-4.5-macOKJan 27 2025
R-4.5-linuxOKJan 27 2025
R-4.4-winOKJan 27 2025
R-4.4-macOKJan 27 2025
R-4.3-winOKJan 27 2025
R-4.3-macOKJan 27 2025

Exports:kcmeans

Dependencies:Ckmeans.1d.dplatticeMASSMatrixrbibutilsRcppRdpack

Get Started

Rendered fromkcmeans.Rmdusingknitr::rmarkdownon Jan 27 2025.

Last update: 2023-11-29
Started: 2023-11-07